

Cancer Vaccine Industry

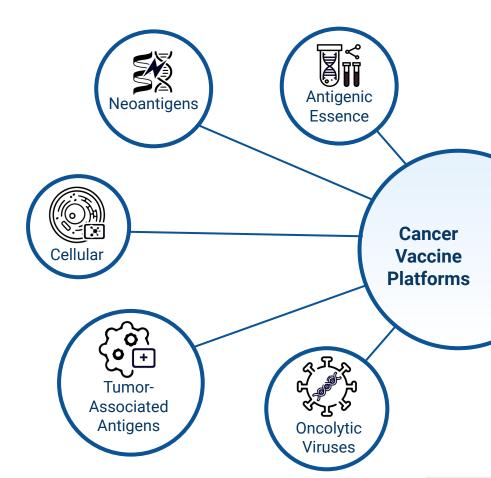
Landscape Overview

Q1 2022

www.deep-pharma.tech info@deep-pharma.tech

Table of Contents

Introduction and Mindmaps	3	Antigenic Essence Platform	40
Level of Cancer Vaccine Innovation of 30 Leading	8	Key Players	45
Companies in Drug Discovery Sector		SWOT Analysis	46
Neoantigen Platform	13	Oncolytic Viruses Platform	47
Key Players	18	Key Players	51
SWOT Analysis	22	SWOT Analysis	55
Tumor-Associated Antigens Platform	23	Cancer Vaccines Delivery Systems	56
Key Players	27	Key Players	60
SWOT Analysis	30	Key Takeaways and General Conclusions	66
Cellular Platform	31	Appendix: List of Entities	70
Key Players	36	Overview of Proprietary Analytics by Deep Pharma Intelligence	84
SWOT Analysis	39	Disclaimer	90

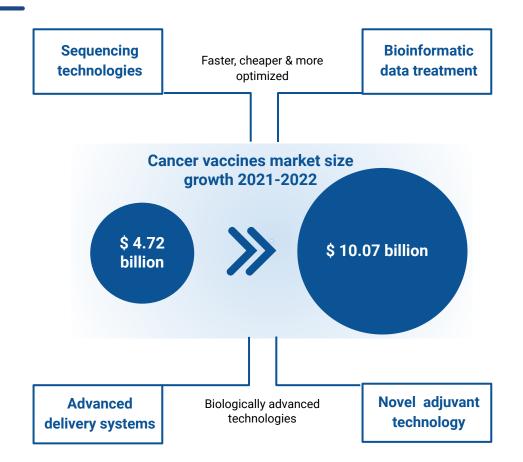

Intro: What is a Cancer Vaccine?

The most powerful weapon against malignancies can be hidden inside the host human body and it is called **immune system**. Cancer mechanisms usually trick our immune system but a proper therapy can turn our immunity back against the tumor.

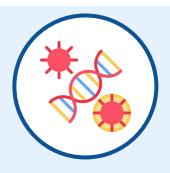
That's the very aim of cancer vaccination — to activate host immunity cells to destroy the tumour cells.

There are multiple platforms developed to obtain cancer vaccines, in this report we are going to discuss 5 of such platforms, which serve as a basement for vaccines creation.

Some of these cancer vaccine platforms overlap and evolve out of each other while still have some unique distinguishable features which was a reason for suggested classification.

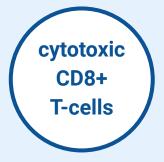

Cancer Vaccine Industry

At first, cancer vaccines didn't succeed: the enthusiasm and interest towards this technology dropped after seeing the high level of adverse effects versus low efficacy.


However, with the development of sequencing technologies, innovative delivery systems, bioinformatic data treatment strategies and vaccine adjuvants — cancer vaccines have more and more prominent chances to become deeply integrated into the market.

In 2021 the **market size** of cancer vaccines was estimated as 4.72 billion US\$ and it is expected to reach **10.07 billion US\$ in 2022.**

Considering this tendency, it is reasonable to say that cancer vaccines start forming a **separate branch of industry**.

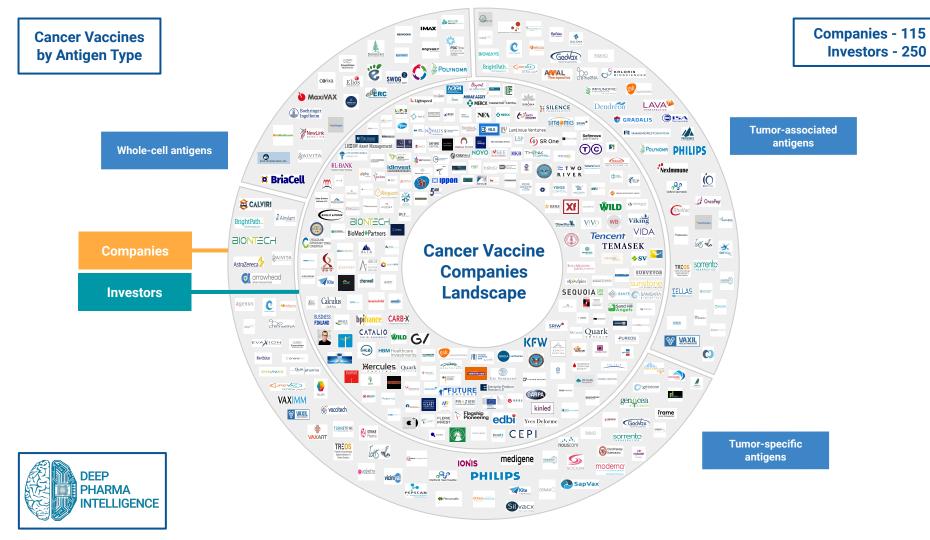

Intro: Where is Cancer Vaccination Right Now?

We learnt how to target tumors through their unique mutations - **neoantigens**

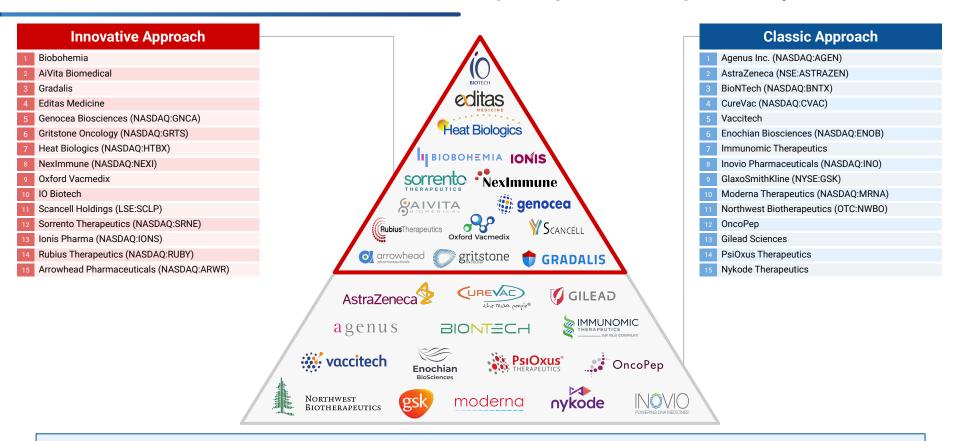
To preventy **tumour escape** we need to target multiple antigens on the tumour cell

We targeted **cytotoxic CD8+ T-cells** to kill the cancer cells

We need to engage **both CD8+ and memory CD4+ T-cells** to prolongate the effect

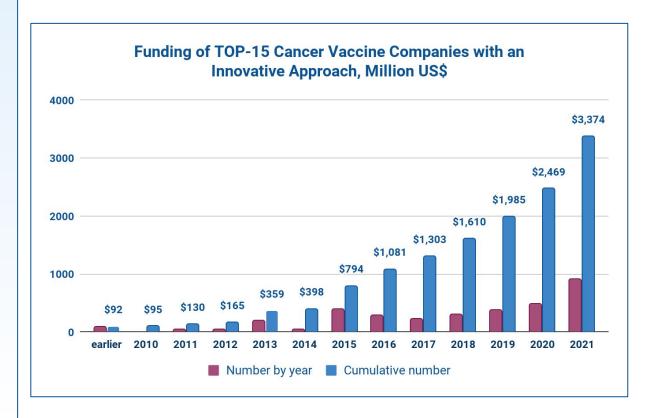


We found out that the **tumour lysates** can activate the immune response to cancer

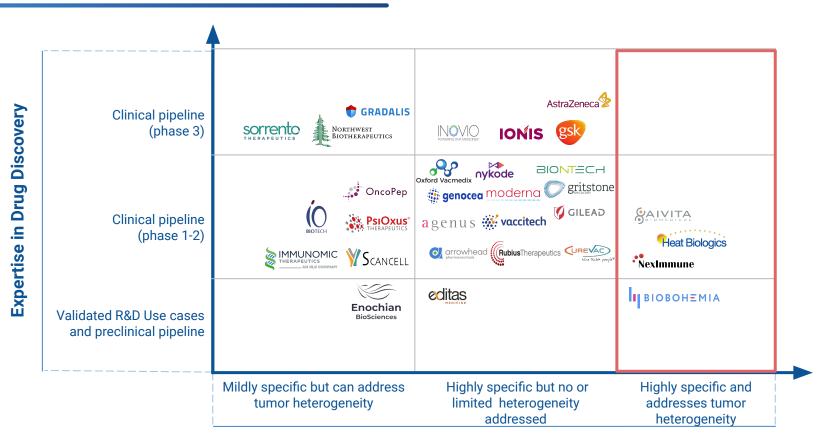


Off-tumor effects became a severe reason for the damage so scientists are working to decrease them

Level of Cancer Vaccine Innovation of 30 Leading Companies in Drug Discovery Sector



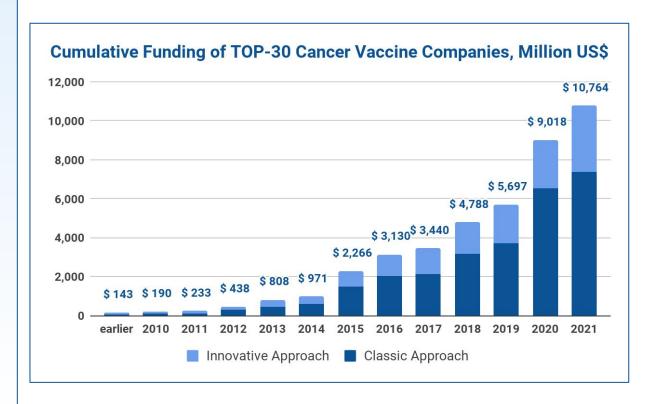
Methodology: database creation followed by the detailed analysis of every individual use case by the quantitative and qualitative features such as: cancer vaccine category; complexity and development possibilities of the technology; number of similar products on the market/development pipelines; novelty of the product; addressment of the unmet needs etc.


Comparison of Top-30 Leading Drug Discovery Companies Expertise in Cancer Vaccines R&D

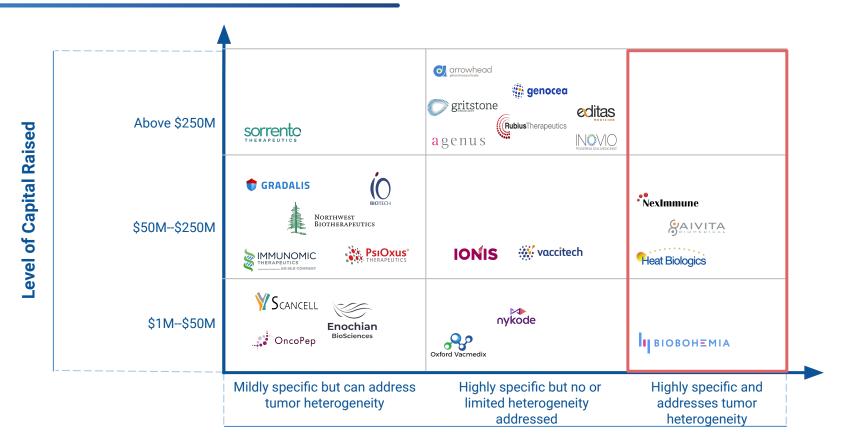
Cancer vaccines development shifted into the direction of more specific tumor targeting due to neoantigen platform. Still, the tremendous majority of such neoantigen vaccines don't overcome the problem of tumor escape mutations and the heterogeneity of cancer cells.

Only restricted number of innovative platforms try to face and solve both issues of highly specific tumor targeting and escape mutations prevention. They apply new approaches on already developed platforms (such as whole-cell, neoantigen, TAA) or initialize new platform (antigenic essence).

Comparison of Top-30 Leading Drug Discovery Companies Expertise in Cancer Vaccines R&D


Tumor targeting efficiency

Comparison of Top-30 Leading Drug Discovery Companies Expertise in Cancer Vaccines R&D


Cancer vaccine leaders belong both to big pharma companies with multiple directions and to fast-growing start-ups which are more oriented on cancer vaccine development only.

Such **big pharma** companies mostly keep up with **mainstream approaches** like neoantigens in the form of mRNA vaccines (Moderna Therapeutics and BioNTech) and raise funding from various sources.

At the same time there is a **drastic growth** experienced by companies who apply more **innovative approaches.** According to the study of TOP-15 cancer vaccine companies with innovative approach at the moment of Q2 2021 they already raised roughly twice as much as during the whole 2020 (\$850 million and \$484 million correspondingly).

Comparison of Top-25 Leading Drug Discovery Companies Expertise in Cancer Vaccines R&D

Tumor targeting efficiency

Neoantigen Platform

Neoantigen Platform: Overview

Neoantigens represent a large platform in cancer vaccines fied and generally in tumor immunotherapy.

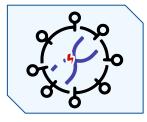
Neoantigens include antigens produced viruses by tumor integrated into the genome and antigens originated by mutant proteins, which are abundantly expressed specifically in cancer cells and have strong immunogenicity and tumor heterogeneity.

Currently a **considerable number of neoantigens** have been discovered, which are unique to tumor cells and are not affected by immune tolerance mechanism.

Neoantigens

Shared

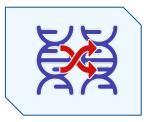
Private


Common across different cancer patients and not present in the normal genome

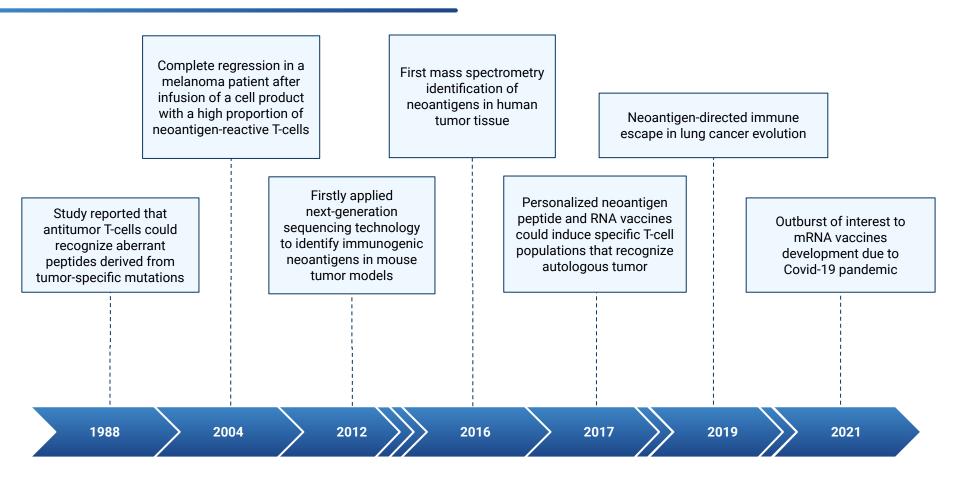
Shared neoantigens that are highly immunogenic have the potential to be screened for use as broad-spectrum therapeutic cancer vaccines for patients with the same mutated gene.

Unique to most neoantigens and completely different from patient to patient

Personalized neoantigen preparation drug can only be specifically targeted to each patient, that is, personalized therapy


Viral infection

Alternative splicing


Gene rearrangement

Protein coding sequence mutation

Neoantigen Platform: Development Milestones

Neoantigen Platform: Cancer Vaccines in Development

There are no yet approved neoantigen vaccines, but according to ClinicalTrials.gov search there are 190 cases of neoantigen studies and none of them entered yet the third clinical phase (not considering HPV-vaccines). It is 30 more cases compared to the search results in Q3 2021, which demonstrates a tremendous growth of interests in this cancer vaccines platform. Many of these studies have shown the good application value of neoantigen (Search term is "neoantigen").

However, the study of neoantigen therapy starts relatively late and still in the laboratory stage. The **first stages** of neoantigen vaccines development are **complex and time consuming.** Even though genome and transcriptome sequencing technologies are actively developing, they remain a milestone together with **bioinformatic treatment of data.** As the result, the complications of neoantigen platform overlap with the well-known issues of sequencing cost, speed, data storage and analysis. However, with the rapid digitalisation and a broad introduction of artificial intelligence, smart robotics and data storage technologies these issues are expected to be at least reduced if not almost fully eliminated.

Step-by-step scheme of neoantigen cancer vaccine development

Collection of tumor and normal tissue

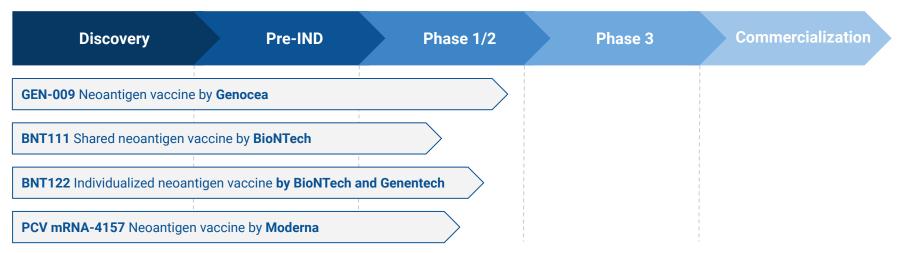
Genome sequencing

Transcriptome sequencing

Bioinformatic candidate id

Mass spectrometry

Evaluation of immunogenicity Synthetic vaccine (DNA/mRNA/ peptides/ DC)

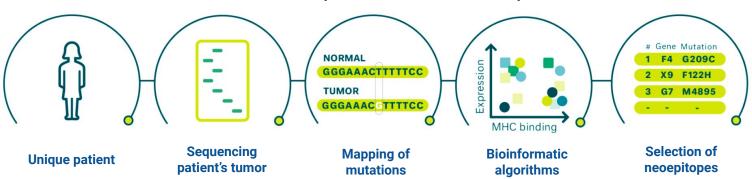


Neoantigen Platform: Cancer Vaccines in Development

Genocea Biosciences GEN-009 vaccine trial (NCT03633110) is now on the Phase 1/2a clinical trials and have shown the best efficacy among the current neoantigen personalization therapies with an estimated completion date of December 2022. The purpose of this study was to evaluate the safety, tolerability, immunogenicity, and antitumor activity of the personalized vaccine GEN-009 for the treatment of patients with solid tumors, which is targeted at a broad range of cancers. The results so far show that 40 doses of the vaccine have been administered and no dose limiting toxicity (DLT) occurred and so far, no patients who have received the vaccine have relapsed.

BioNTech and Moderna are big pharma leaders in development of cancer vaccines of various forms based of neoantigens. BioNTech has 6 cancer vaccines in development with shared neoantigens (FixVac platform) and 2 cancer vaccines owned together with Genentech based on individualized approach (iNeST platform).

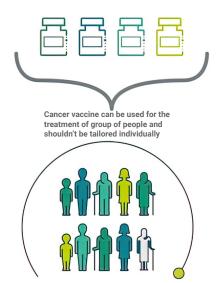
Neoantigen cancer vaccines development pipeline


 $\label{eq:bight} \textbf{BioNTech} - \text{big pharma company that mostly specializes on various cancer immunotherapies. They own technologies with}$

- developed mRNA platform
- cell therapies
- antibodies
- small molecule immunomodulators

BioNTech is oriented on individualized immunotherapy with patient-specific approach. It requires a complex bioinformatic data treatment, that is why the company gathered expertise in bioinformatics of mutation detection, cancer genomics and immunotherapy

BioNTech's validated patient-centric bioinformatic process



Deep Pharma Intelligence Source - BioNTech Approach

FixVac — cancer vaccine with shared neoantigens

Contains selected combinations of unmodified, pharmacologically optimized mRNA, encoding known cancer-specific shared antigens; mRNA is delivered using lipoplex technology.

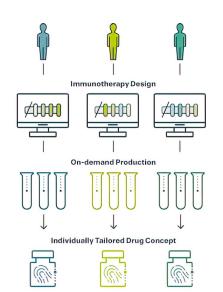
BNT 111 — Advanced
Melanoma

BNT 112 — Prostate Cancer

BNT 113 — HPV16+ Head and
Neck Cancer

BNT 114 — Triple Negative
Breast

Cancer


BNT 115 — Ovarian Cancer

BNT 116 — NSCLC

All of them currently are on phase 1 of clinical trials

iNeST — Individualized Neoantigen Specific Immunotherapy cancer vaccine with private neoantigens

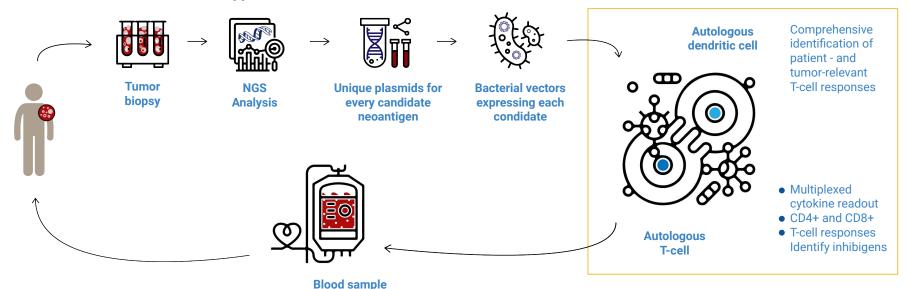
Contains unmodified, pharmacologically optimized mRNA encoding up to 20 patient-specific neoantigens, delivered by RNA-LPX formulation.

BNT 122 — Metastatic Melanoma

(currently on the phase 2 of clinical trials)

And for locally advanced or metastatic solid tumors

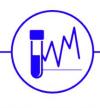
(currently on the phase 1 of clinical trials)


Rights are equally shared with Genentech

Genocea Biosciences owns an innovative approach for neoantigen vaccines development - ATLAS platform. It is a unique bioassay that enables a superior, patient biology-driven approach to identify targets of protective T cell responses. ATLAS zeroes in on only those **surface-presented antigens that trigger anti-tumor T cell responses**.

ATLAS is unique in the way that it can identify **pro-tumor inhibitory antigens** (Inhibigens), which subvert anti-tumor immune responses. Vaccination with such Inhibigens is proved to drive tumor hyperprogression in mice.

How does the Genocea's ATLAS approach work?



Genocea Biosciences greatly focuses in the **antigen selection** for the best tumor targeting and destruction, which lies at the very basement of the ATLAS platform.

GEN-009 is a neoantigen vaccine candidate in a Phase 1/2a clinical trial to treat a variety of solid tumors. ATLAS identifies neoantigens optimized both to **patients' T cell responses and their tumors**, underscoring the advantages of the technology for neoantigen selection.

Other vaccine candidate **GEN-011** belong to the class of **adoptive T cell therapy**. GEN-011 Neoantigen-activated Peripheral T cells (NPTs) are peripheral blood T cells activated by the ATLAS-identified patient-specific neoantigens and expanded to create a **customized therapeutic**.

How does the Genocea's ATLAS approach work?

Collect available fixed tumor and blood sample, send for sequencing

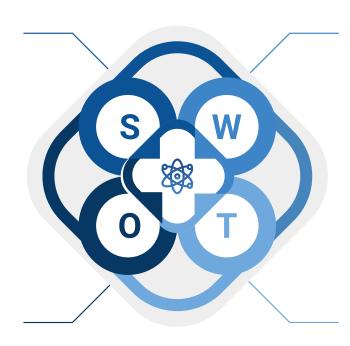
Patient sees oncologist, begins SoC ICI

Inhibigens and neoantigens identified by ATLAS

Neoantigens (up to 20 peptides) synthesized as peptides and formulated with Poly-ICLC

Patient receives 5 SC doses over 6 months

Deep Pharma Intelligence Sources — Genocea Pipeline


Neoantigen Platform: SWOT Analysis

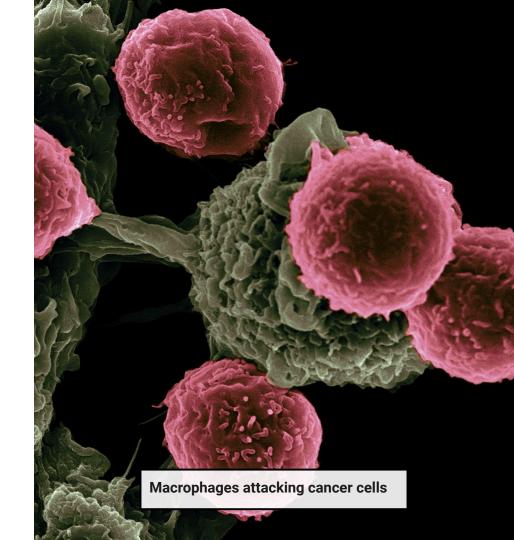
Strengths

- Great financial support which moves the platforms faster to clinical research
- Absolute specificity to the tumor cells
- Already have products in clinical phase of development
- Cancer vaccine can be delivered in various forms

Opportunities

- Vaccines possibly can enter the clinical trials phase 3
- Neoantigen cancer vaccines might be the best personalized solution for cancer treatment

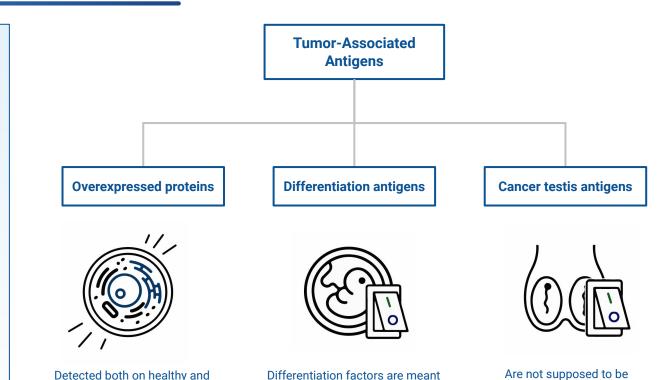
Weaknesses


- The development cycle of neoantigen vaccine is too long
- Preparation and delivery of vaccines remains a challenge
- The heterogeneity of the tumor is difficult to resolve with neoantigen platform
- Limited number of antigens meet the neoantigen criteria
- Expensive

Threats

- Platform has a limited number of directions to develop further in case of failure
- It might be substituted with novel platforms which are more cost-effective and highly specific for cancer cells at the same time

Tumor-Associated Antigens Platform


Tumor-Associated Antigens Platform: Overview

Tumor-Associated Antigens (TAA) are self-proteins that are abnormally expressed by cancer cells.

It means they are **present both in healthy and cancer cells** and differ just by the level of exposure or presentation by cell.

This makes TAA slightly easier to discover compared to neoantigens, but at the same time TAA might cause **peripheral tolerability issues** in patients, lack of T-cell activation and collateral damage.

Even though TAA are used for the currently well-developed **CAR-T** technology, they still remain to be challengeable for cancer vaccines development.

to be present at cells only during

the early development and are

saved only in small subset of

cells in developed body

present in healthy adult

somatic tissues but are

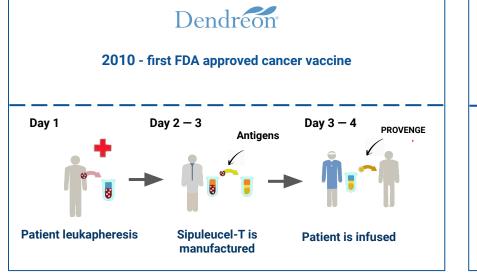
expressed in testicles in

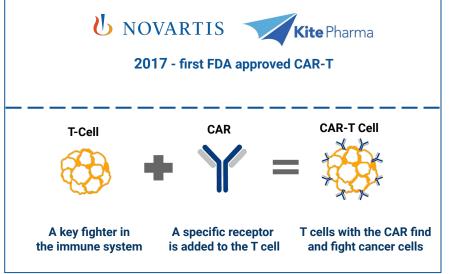
male germ cells

Deep Pharma Intelligence

cancer cells of human body

but due to the higher amount


at malignant cells their


detection will be preferable

Tumor-Associated Antigens Platform: Development Milestones

Cancer immunotherapy field experienced at least two significant breakthroughs connected with tumor-associated antigens platform:

- Promising approval of Provenge cancer vaccine (sipuleucel-T) by FDA for the treatment of prostatic cancer, which used tumor-associated antigen as
 a target
- Development and approval of multiple CAR-T therapies which are based on targeting of TAA

Tumor-Associated Antigens Platform: Cancer Vaccines in Development

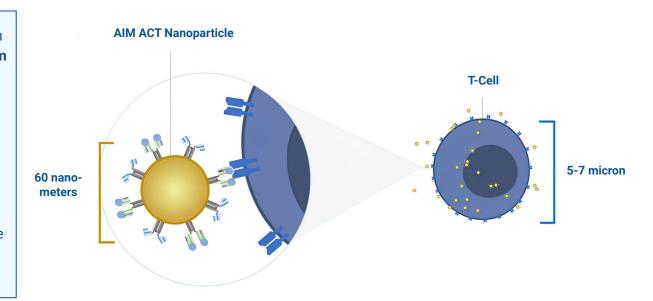
Tumor-associated antigens is one of the most well-developed platforms, that's why there is plenty of clinical candidates even not considering CAR-T and counting only cancer vaccines. At the moment of our research there were roughly **200 cases** of tumor-associated antigens studies according to ClinicalTrials.gov search.

After approval of **Provenge in 2010** — no other cancer vaccine entered the global market. Provenge passed clinical trials stage with a low efficiency level, but just enough to pass it, so now it is not as frequently used as we could wish it were and toxic chemotherapy remains to be more effective way to treat prostate cancer.

Tumor-associated antigens cancer vaccines development pipeline

Discovery	Pre-IND		Phase 1/2		Phase 3	Commercialization
Provenge Cellular vaccine wi	th PAP for prostate cancer	by Dendre	eon	1		
NEXI-002 Cellular vaccine fo	r Multiple Myeloma by Nexi	mmune				
PVX-410 TAA vaccine by Onc	соРер	1				
INO-5401 TAA vaccine by Inc	ovio Pharmaceuticals	:				

Tumor-Associated Antigens Platform: Key Players


NexImmune — biopharmaceutical company which implements an innovative approach to improve and develop tumor-associated antigens cancer vaccines. They own a nanotechnological Artificial Immune Modulation (AIM) platform.

NexImmune constructs "synthetic dendritic cells" in the form of AIM nanoparticles, which are capable of directing a specific T cell-mediated immune response.

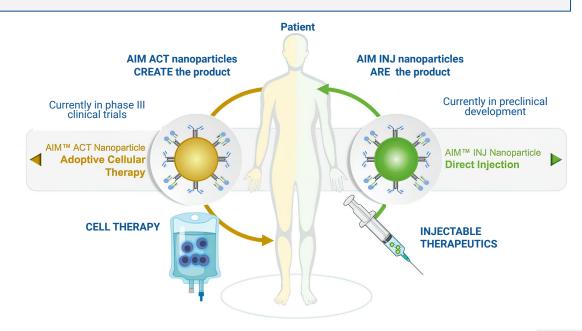
During antigen presentation T cells can recognize multiple antigens in the form of peptides. This produces T-cells with multiple immune targets for a robust antitumor activity.

AIM™ Nanoparticles induce the production of both memory cells and cytotoxic effector cells. Effector cells will be the main direct mechanism to destroy tumor cells through the release of cytotoxic granules, while memory cells will store in the bloodstream.

Deep Pharma Intelligence

Sources — NexImmune Technology

Tumor-Associated Antigens Platform: Key Players


NexImmune is oriented on few principles in developing cancer vaccines with TAA:

- The ability to expand T cell populations that recognize and attack multiple antigen-specific targets
- Consistency in containing T cell subtypes that support anti-tumor potency, self-renewal, proliferation, and long-term T cell survival

AlM nanoparticles are designed to **mimic the immune functions of natural antigen presenting cells**, such as dendritic cells, by delivering two key immune-directing T cell signals

Adoptive cell therapy modality includes cancer vaccines in the form of donor- or patient-derived T cells for AML, multiple myeloma and solid tumors

Injectable modality is presented by **injectable AIM nanoparticles** for solid tumors

nce Sources — NexImmune Technology 28

Tumor-Associated Antigens Platform: Key Players

Inovio Pharmaceuticals is a biotech company which is oriented on DNA medicines development.

One of the main focuses of the company is HPV-vaccines with candidates on the third phase of clinical trials. At the same time there are promising cancer vaccine candidates with **tumor-associated antigens** in the **second phase of clinical trials**.

PRECISELY DESIGNED PLASMIDS (SynCon®)

SynCon uses a proprietary computer algorithm that has been designed to **identify and optimize the DNA sequence** of the target antigen.

PROPRIETARY SMART DEVICES (CELLECTRA®)

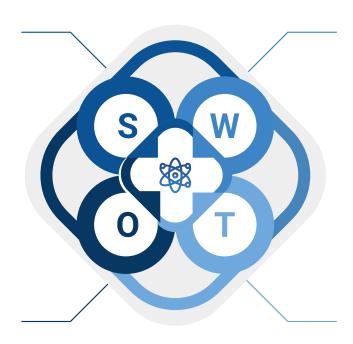
INOVIO's DNA medicines deliver **optimized plasmids** directly into cells intramuscularly or intradermally using one of INOVIO's proprietary hand-held **CELLECTRA®** smart devices.

INO-5401 cancer vaccine

WT1, PSMA, hTERT antigens for glioblastoma multiforme (with PD-1 inhibitor)

REGENERON

INO-5151 cancer vaccine


Tumor-Associated Antigens Platform: SWOT Analysis

Strengths

- There are already examples of FDA approved immunotherapies using TAA
- Applicable to almost any tumor
- Lots of accumulated knowledge due to the long time of platform investigation

Opportunities

- Cancer vaccine candidates can enter phase 3 of clinical trials
- Using the experience of FDA approved immunotherapies cam improve the developing products faster

Weaknesses

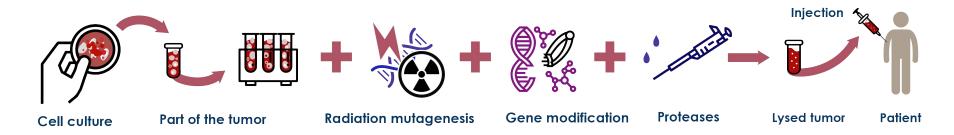

- Cancer vaccines with TAA are not highly specific to tumor cells
- High number of adverse effects
- Peripheral tolerability risk

Threats

- his platform is likely to be pushed out of the cancer vaccines field by platforms with higher specificity
- Provenge cancer vaccine is seldomly used due to the low activity and high cost even though it was FDA approved

Cellular Platform

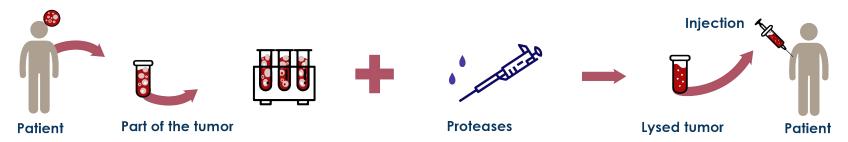
Cellular Platform: Overview


Whole-cell platform for cancer vaccines is the earliest platform developed with the principle "vaccinate with something you want to fight against".

Whole-cell vaccines consist of the **all cellular antigens**, which means there are tumor-associated antigens and neoantigens included. Unlike TAA or neoantigen platform - whole-cell platform contains **both characterized and uncharacterized TAA** and **TSA**.

This approach is suitable, in theory, for any **solid tumor** regardless its mutation burden and the general process of its development takes less steps compared to TAA or neoantigen platforms.

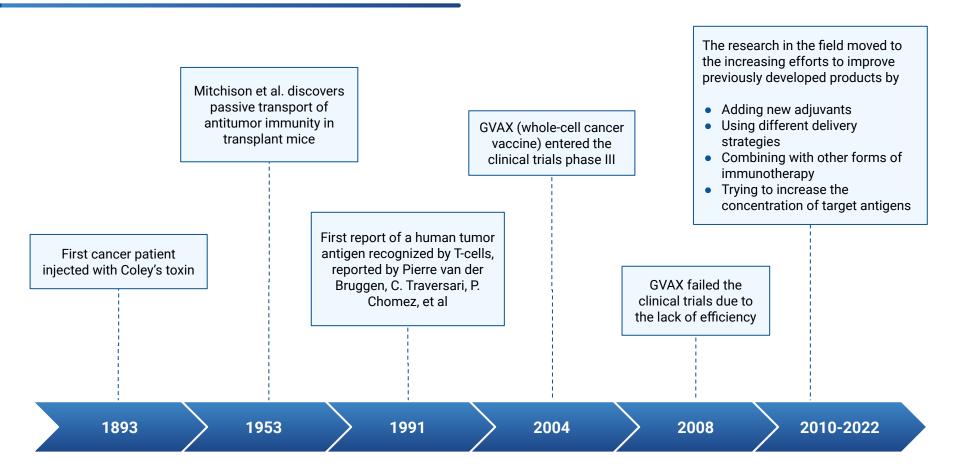
Irradiated gene-modified tumor cells


Irradiated gene-modified autologous or allogeneic tumor cells, which were engineered to encode **immunostimulatory agents** including cytokines and **costimulatory molecules**.

Cellular Platform: Overview

Tumor cell lysates

Whole tumor cell lysates contain all tumor cell antigens. **Autologous or allogeneic lysates** could be prepared in different ways leading to cell death: cells can be **frozen and thawed** repeatedly or irradiated with **ultraviolet B** (UVB)



Tumor-derived exosomes

Tumor cell derived exosomes could be obtained from ascites, pleural effusion, and plasma samples of patients; such exosomes comprise various tumor antigens, one of the leading antigens investigated is **heat shock protein**

Cellular Platform: Development Milestones

Cellular Platform: Cancer Vaccines in Development

Despite the large number of developed products — none of them has entered the cancer vaccine market yet.

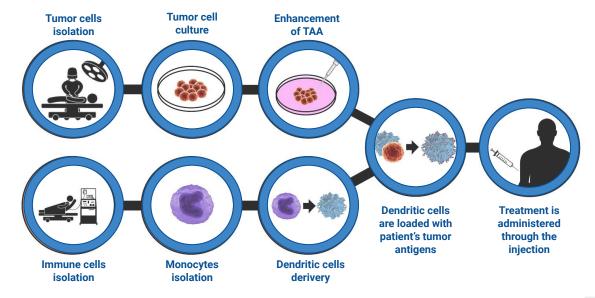
Whole-cell platform for cancer vaccines is an attractive field for various ways of improvement to eliminate its considerable cons such as low efficiency and high toxicity. **Heat Biologics** is developing its two products: **HS-110 and HS-130** by implementing the pan-antigenic self-adjuvant technology. On the other hand **Northwest Biopharmaceuticals** has a classic approach for cancer vaccines development but focuses more on clinical application optimization for clinicians and patients.

Still, history of whole-cell cancer vaccines shows some failures such as one of the most advanced cancer vaccine candidates GVAX which resulted into higher mortality level in clinical trial phase 3 patients.

Cellular cancer vaccines development pipeline

Discovery	Pre-IND		Phase 1/2	Phase 3	Commercialization
DCVax-L for solid tumors (brain	and ovarian cancer) by No	rthwest B	Biopharmaceuticals		
TAA enriched vaccine for gliobl	astoma by Aivita (NCT03400	917)			
HS-110 vaccine for NSCLC by H	leat Biologics				

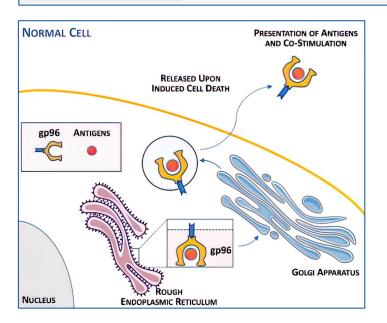
Cellular Platform: Key Players



AiVita Biomedical is a medicine company which develops personalized cancer vaccines with a set of TAA-enriched whole-cell antigens.

Their therapies are oriented to kill **tumor-initiating cells** (a small portion of the tumor mass which is the most prolific in the ability to generate additional cancer cells) while implementing **pan-antigenic approach**.

They developed AV-GBM-1 - cancer vaccine in the form of autologous dendritic cells loaded with tumor antigens from a short-term cell culture of autologous tumor cells


On the first steps the sample of the patient's tumor undergoes cell culture. The aim of this step is enrichments with tumor-initiating cells and their amplification. It is the most critical stage since it reduces the non-specific signals from cells. Selected in such way tumor cells are used to load antigen-presenting (dendritic) cells, which are delivered to the patient back in the form of subcutaneous injections.

Cellular Platform: Key Players

Heat Biologics — is a biotechnology clinical-stage company focused on developing its proprietary "ImPACT" (Immune Pan-Antigen Cytotoxic Therapy) adjuvant technology. It is first-in-class fully human adjuvant system that functions as an immune stimulator and an antigen-delivery system at the same time.

Leading product — HS-110 (viagenpumatucel-L)

Vaccine derived from irradiated human lung cancer cells genetically engineered to continually secrete **gp96-lg**

Clinical phase II stage, in combination with checkpoint inhibitor

nivolumab (Opdivo®) or

pembrolizumab (Keytruda®)

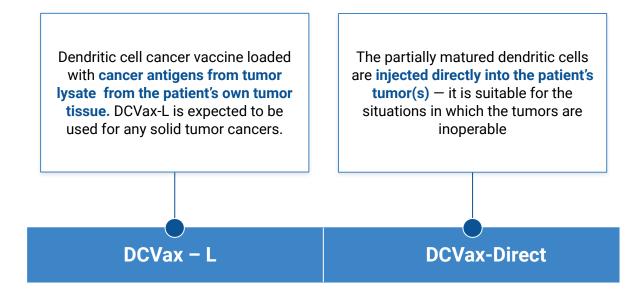
H Bristol Myers Squibb®

HS-130

Vaccine derived from irradiated human lung cancer cells expressing the co-stimulatory fusion protein **OX40L-Ig**

Clinical phase I stage for a wide range of solid tumors

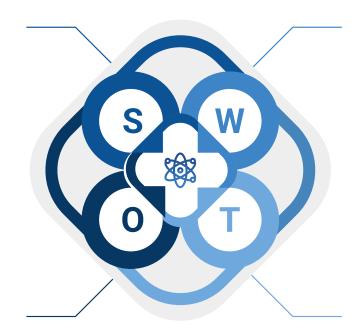
Cellular Platform: Key Players



Northwest Biopharmaceuticals — biotechnology company focused on discovering, developing and commercializing immunotherapy products that generate and enhance immune responses to treat cancer.

This company is fully focused of the development of whole-cell cancer vaccines based on **DCVax technology** (the technology which implements dendritic cells for a cancer treatment) or simply the direct usage of DC for cancer treatment.

Besides focusing on the development of cancer vaccine candidates, one of the Northwest Biotherapeutics priorities is a user-friendly approach for both patients and physicians.


Simplicity in the vaccine preparation, storage and delivery is one of the top values, which creates a multi-directional approach with a broad coverage of needs.

Cellular Platform: SWOT Analysis

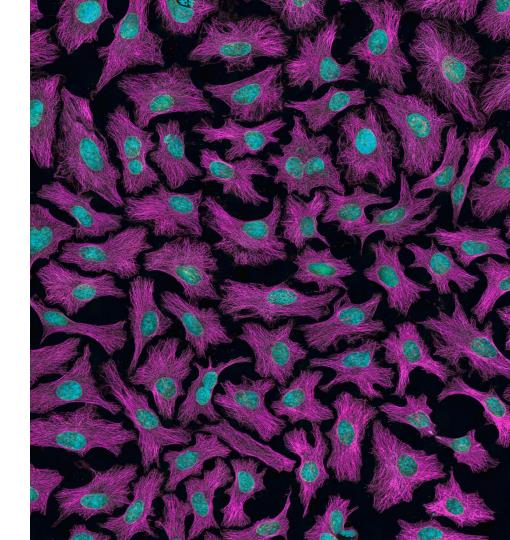
Strengths

- Targeting of all cellular antigens
- · Natural antigens composition
- Cost-effective

Opportunities

 The vaccines developed earlier in whole-cell platform which failed clinical trials might be upgraded with innovative platform

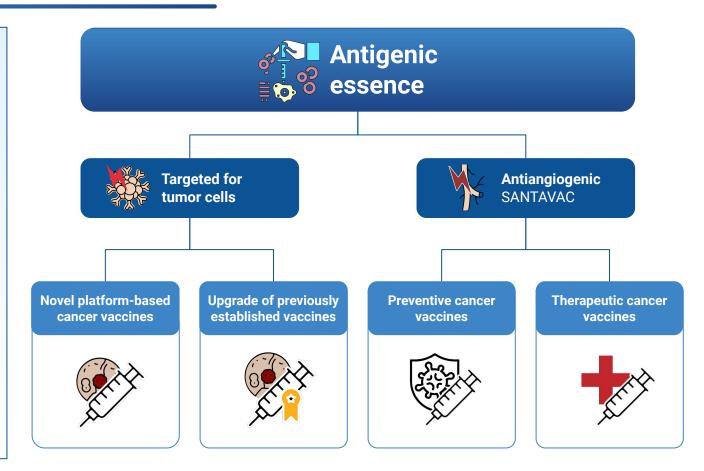
Weaknesses


- Cellular noise
- Low concentration of immunogenic antigens
- Higher toxicity due to non-specific targeting of healthy cells
- Low immunogenicity

Threats

- It might not reach the needed level of efficiency on clinical trials even using adjuvants, checkpoint inhibitors and immune stimulators etc.
- It is likely to be substituted by more innovative platform
- GVAX (an advanced product in whole-cell cancer vaccine platform) failed clinical phase 3 with a high mortality rate

Antigenic Essence Platform



Antigenic Essence Platform: Overview

Antigenic essence platform is an innovative platform which can be considered as a cellular vaccines revitalisation. It implemented the lessons from other platforms and created a novel product.

Unlike whole-cell vaccines — antigenic essence includes only **surface- presented antigens**, recognised by immune system.

At the same time, unlike neoantigens or tumor-associated antigens — antigenic essence targets a wide number of antigens and doesn't require a complex data treatment and only limited application of one proteomics method.

Antigenic Essence Platform: Overview

Antigenic essence includes only visible for immune system antigens

The **size of antigens is optimal** to be presented by
MHC to immune system

Antigenic essence is a **specific footprint** of cellular antigens Whole Cell Approach Revitalization

more effective and more specific, while eliminating all limitations Antigenic

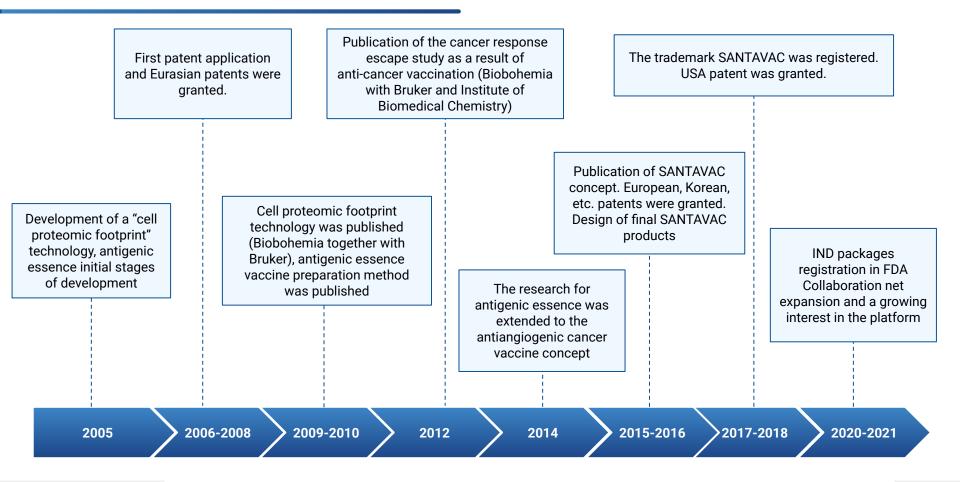
Essence

killing any solid tumor by destroying its vascular system

Cost and Time Efficiency

personalized or group; peptides or dendritic cells; manufacturing friendly

Targeting
Tumor Microenvironment



Antigenic essence can target not only cancer cells, but endothelial cells too

Antigenic essence can be a platform for the **universal medicine** for solid tumors

Targets the whole antigens spectrum - revolutionary antiangiogenic approach

Antigenic Essence Platform: Development Milestones

Antigenic Essence Platform: Cancer Vaccines in Development

Antigenic essence platform may be considered as a significant upgrade of whole-cell platform. It means that antigenic essence is

- Cost and time-effective
- Applicable for all solid tumors regardless their mutation burden status
- Applicable both for personalized or group medicine
- Can be used to direct tumor cells or vessels

This platform can be a a solution for previously failed whole-cell cancer vaccines or a good collaborator for developing ideas. Right now antigenic essence platform is **at preclinical stage** of development but according to analysed data it **should come to final phases of clinical trials** (for example **GVAX** and **CanVaxin**) and pass it due to significant revitalization of the technology.

Step-by-step scheme of antigenic essence cancer vaccine development

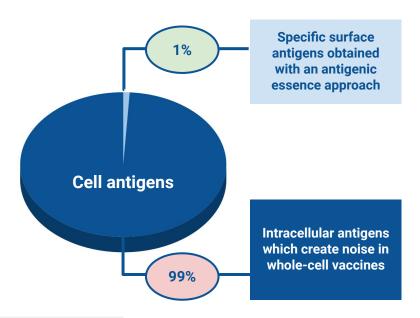
Complex Omics approaches and bioinformatic data treatment are not needed

Cell line or primary cell culture

Antigenic essence preparation

Only for quality control of antigenic essence products

Mass spectrometry


Natural peptides or peptide-loaded DC vaccine

Antigenic Essence Platform: Key Players

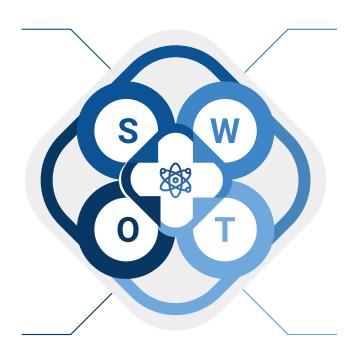
Biobohemia, Inc. — biotechnology company focused on the development of cancer vaccines. They fully own an antigenic essence platform which is based on a deep knowledge in proteomics and provides the tool for a revitalization of cellular vaccines.

The antigenic essence technology allows to control the composition, as well as an efficient purification from ballast substances (cellular 'noise'), and evasion of MHC restrictions.

Naturally produced antigens by the tumor cells tend to induce the most accurate targeting of these cancer cells. Even though such native-cell antigens are obtained by the appliance of cellular vaccines platform, whole-cell vaccines also have a tremendous majority of ballast intracellular proteins. This cellular noise

- dillutes target antigens
- results into the undesired immune response
- reduces the cancer vaccine specificity

That is why antigenic essence platform met the need to develop a novel cell-based cancer vaccine free from intracellular immunogenic molecules.


Antigenic Essence Platform: SWOT Analysis

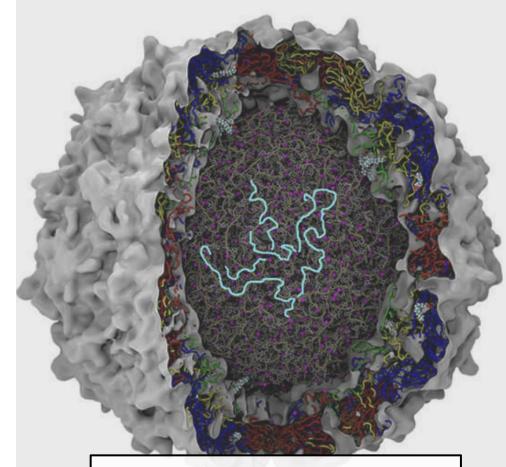
Strengths

- Innovative platform which eliminates all the cons of previously developed platforms
- Targeting of only surface antigens visible for immune system
- High concentration of antigens
- Controllable set of antigens in doses

Opportunities

- Can be used to upgrade cellular vaccines developed earlier
- Can become a new emergent star of cancer vaccines market
- Potentially can cure any solid tumor
- Can become a leader in preventive cancer vaccines field

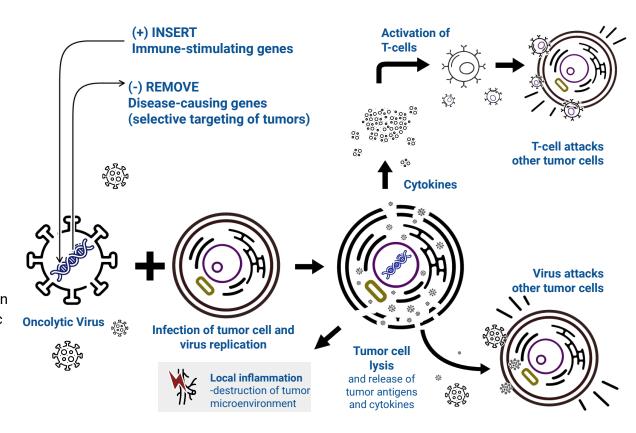
Weaknesses


- Not directed to target non-solid tumors (20% of cancer cases)
- Low public awareness about the new technology

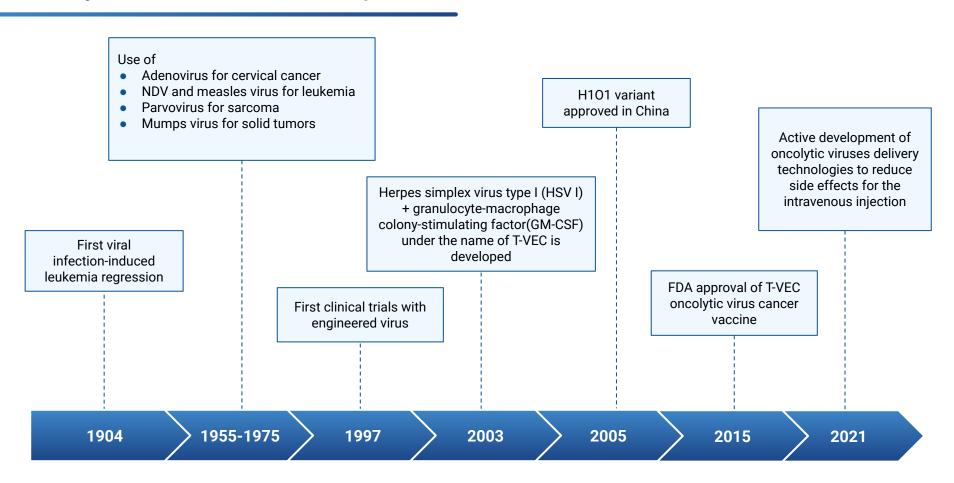
Threats

- The platform is not validated in preclinical study, although preliminary validation is strong
- Operational capacity, structuring business processes

Oncolytic Viruses Platform


Engineered oncolytic poliovirus for cancer treatment Credit: Duke Cancer Institute and cancer.gov

Oncolytic Viruses Platform: Overview


Oncolytic virotherapy is based on the property of some viruses to infect the cells and induce the cell lysis.

In case of cancer vaccination these viruses are **modified to target cancer cells** and enhance the immune response to completely destroy the tumor.

Oncolytic viruses cancer vaccines platform is greatly based on the neoantigens and tumor-associated antigens platforms, since the viruses and "taught" to target such antigens on the cancer cells. But due to the drastic uniqueness of the mechanism of action of such vaccines it is fair enough to separate them from other molecular and cellular cancer vaccines.

Oncolytic Viruses Platform: Development Milestones

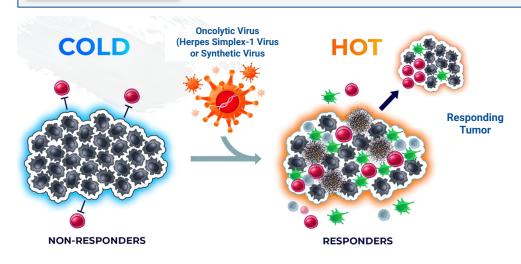
Oncolytic Viruses Platform: Cancer Vaccines in Development

For today there is one FDA approved oncolytic virus immunotherapy - Talimogene laherpavepvec (T-VEC) owned by Amgen.

Stil there is active development of oncolytic viruses which would target a wider spectrum of tumors and won't induce the formation of undesired antibodies by the immune system.

into tumor

immune response


Oncolytic viruses cancer vaccines development pipeline

modification

Discovery	Pre-IND		Phase 1/2		Phase 3	C	ommercialization
ONCR-177 HSV for intratumora	Il injections by Oncorus						
CAN-2409 Adenovirus for prostate cancer by Candel Therapeutics						>	
OLVI-VEC for ovarian cancer by	Genelux						
ParxOryx for GBM by Oryx	'						

Oncorus — biotechnology company which develops next-generation viral immunotherapies for oncology. Their technology enables immune system to target cold tumors converting them into hot tumors.

They state that their approach not only activates antitumoral immunity but also stimulates the release and presentation of a greater number and variety of neoantigens.

One more important mechanism is a synthesis of **transgenes** which influence **tumor microenvironment**.

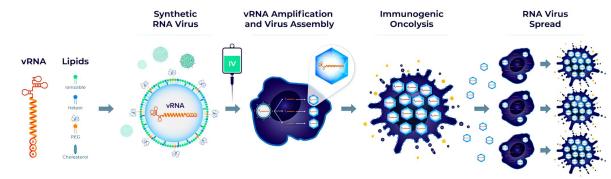
TUMOR CELL

Sources - Oncorus Technology

Oncorus is moving into two directions in virotherapy field: Herpes Simplex Virus platform and viral RNA platform. The products of such platforms have different delivery approaches: directly intratumoral through the injection and intravenous respectively.

oHSV

ONCR-177 is a leading product of this platform which is an oncolytic virus which should be administered directly into the tumor site; consequently this induces immunogenic cancer cell death and drives llasting and systemic anti-tumor response


Oncolytic virus brings 5 immunostimulatory agents:

IL-12, CCL4, FLT3LG, anti-PD-1 and anti-CTLA-4

vRNA

This technology is supposed to be less immunogenic which should result into a lower non-specific immune response. Viral RNA is delivered in lipid nanoparticles.

Leading programs ONCR-021 and ONCR-788 are based on coxsackievirus A21 (CVA21) and Seneca Valley Virus (SVV) respectively

Deep Pharma Intelligence Sources - Oncorus Technology

Candel Therapeutics focuses on preventing the recurrence and progression of cancer by applying viral immunotherapy. They are aimed to reach a low toxicity level which is well suited for the treatment of less aggressive or slower growing cancers.

Adenovirus Platform

CAN-2409 is an engineered gene construct encoding the thymidine kinase gene, which should be transported into infected tumour cells. Administered in the form of intratumoral injection.

multifactorial approach
which enables
virus-based vectors to
activate cancer-killing
mechanisms

HSV Platform

CAN-3110 is engineered to express the gene responsible for viral replication only when it is activated by a tumor-specific Nestin promoter. This provides a better regulation of immune response and precise targeting.

Genelux is an innovative biopharmaceutical company which develops oncolytic virotherapy and combines it with other cancer vaccine approaches.

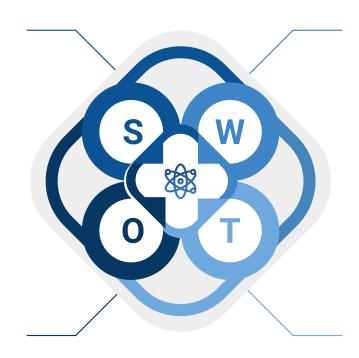
Their leading product is **Olvi-Vec** is currently on the stage 2 of clinical trials and it is stated that it can effectively fight multiple cancers (including both solid tumors and blood malignancies). Genelux owns a **Choice Discovery Platform to** develop an extensive library oncolytic viruses strains identified from multiple *in vitro* and *in vivo* selection criteria.

V2ACT (Virus and Vaccine (Neoantigen)-Enhanced Adoptive Cell Therapy) is a unique combinational approach for immunotherapy developed by Genelux.

This immunotherapy is aimed to produce a strong immune response and an outburst of primed cancer neoantigen-specific effector T cell precursors

Olvi-Vec Immuno-Therapy Chemotherapy (platinum) refractory and/or re	Generation Oncolytic Virus		
	Regional (Advantages)	Intravenous (Advantages)	Local (Advantages)
Ability to target advanced and metastatic diseases	/	/	×
Ability to target cancers without prolonged treatment burden	/	/	×
Ability to target and treat tumors of varying sizes	/	/	X
Robust immune activation profile	/	/	X

Deep Pharma Intelligence Sources — Genelux Technology


Oncolytic Viruses Platform: SWOT Analysis

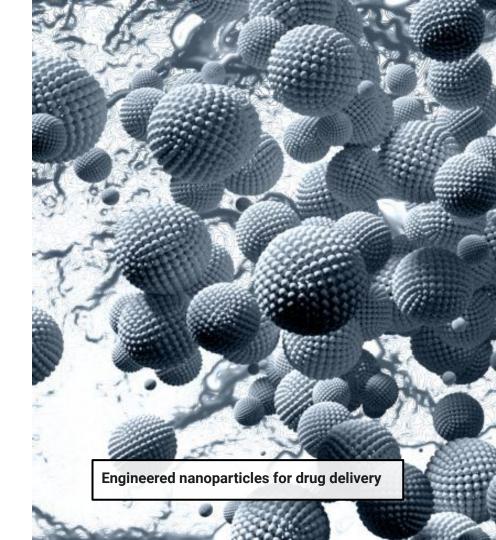
Strengths

- Can reach 'cold' tumors and turn them into 'hot' tumors
- Targets both tumor and its microenvironment
- Creates a strong immune response

Opportunities

- Can be efficiently improved through combinational therapies
- Can become the main mechanism of the tumor immunization if it is not reachable for other therapies

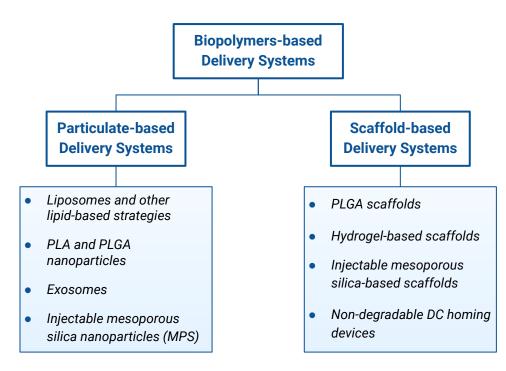
Weaknesses


- Usually causes undesirable immune response with extensive antibodies production which neutralise the virus
- Limited number of the antigens which can be targeted
- Mostly needs to be administered through the injection

Threats

- Severe side effects resulted by the viral activity regarding healthy cells
- Gene modified viruses injected into a human body might cause some ethical concerns

Cancer Vaccines Delivery Systems



The Need of Effective Delivery System

One of the main challenges in modern immunotherapy is targeting cold tumors (tumors surrounded by immunosuppressive cells) - the subclass of solid tumors. Implementing the appropriate delivery system is the primary way to overcome this challenge. Many clinical trials of cancer vaccines fail because of ineffective delivery methods. For example, vaccination using unmodified peptides generated an overall response rate of only 3% due to difficulty activating antigen-presenting cells.

Biopolymers-based delivery systems could enable spatiotemporal presentation to cells and the microenvironment, thus enhancing efficacy and reducing potential adverse effects. Nowadays, the science of biopolymers is rapidly developing, which allows the usage of different biopolymers to overcome various delivery challenges specific to each type of vaccine.

Combining advances in biomaterials with a deeper understanding of cancer immunology is critical for developing a clinically effective cancer vaccine platform.

Particulate-based Delivery Systems

Particulate-based approaches have long been utilized to improve therapeutic delivery to particular tissue areas while minimizing off-target and systemic side effects.

Liposomes

Liposomes have a hydrophobic outer layer and a hydrophilic inner core, making them ideal for encapsulating both hydrophobic and hydrophilic medicinal cargo.

- ✓ Stable
- Long depot action at the injection site
- ★ Limited loading capacity ★ Once released, vaccines become impossible to retrieve -> uncontrollable responses

Nanoparticles

Nanoparticles are used for oncotherapeutics delivery because they display target specificity to the tissue of interest, based on size, charge, surface properties and dissemination strategy.

- Limited off-target accumulation
- X Limited delivery efficiency
- Limited loading capacityLimited to a cargo of

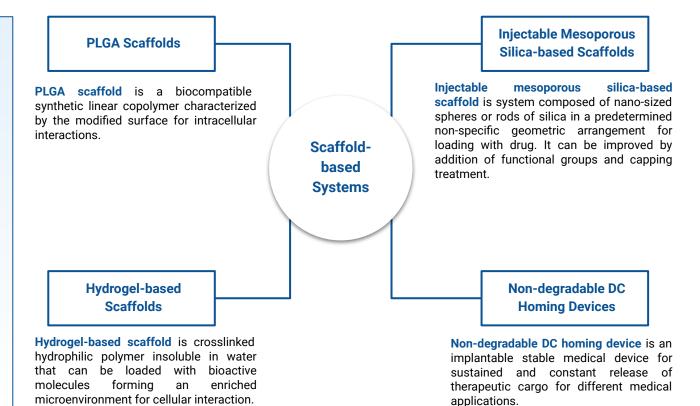
peptides

Exosomes

Exosomes, microvesicles, and apoptotic bodies, which are membrane-bound extracellular vesicles released from the endosomal compartment of most eukaryotic cells, can be used as drug delivery vehicles.

- ★ Many manufacturing challenges
- X New technology which requires more research before trials in human

MPS Nanoparticles


Mesoporous silica-based (MPS) approaches aim to address the challenge in high variability in delivery efficacy dependent on cellular interactions by leveraging their well-established drug carrier properties and high versatility in conjunction with other materials.

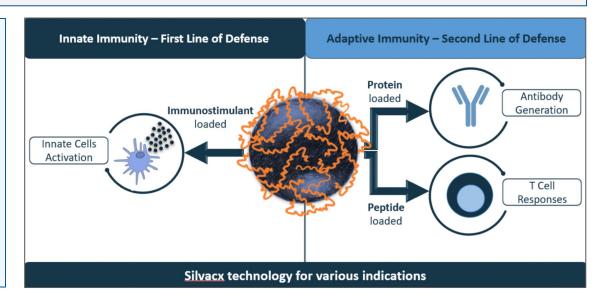
- ✓ Silica is non-toxic material
- Large loading capacity
- New technology which requires more research before trials in human

Scaffold-based Delivery Systems

Scaffold-based vaccines are structures intended to initiate antitumor immunity locally at the implantation or injection site. For in situ cancer vaccines, most deliver stimulatory adjuvants and antigens to induce in situ DC homing and subsequent antigen-specific immune activation.

In general, in situ cancer vaccines utilizing scaffolds must be designed to address three key criteria. They should be macroporous, clinically translatable, and should release immune potentiating adjuvants.

SilVacx — is a spin-off from Merck AG, which specializes on developing novel delivery systems for cancer immunotherapy, including cancer vaccines. SilVacx technology is based on **silicon dioxide nanoparticles**, which can help to make cancer vaccines material delivery in the human body efficient and cost-effective.


SilVacx project is supported by **Life Science Inkubator GmbH** (LSI), which is the first time LSI supported a research project originating from a pharma company. The platform is mainly oriented for therapeutic cancer vaccines, but can be used for preventive vaccines as well.

Currently the platform is designed for **neoepitope-based personalized** antitumor vaccines and extremely powerful for **HPV** (human papillomavirus) induced cancers.

SilVacx's technology provides

- stimulation of the **innate** immune system
- stimulation of the adaptive immune system

Virus-sized particles with a virus-like morphology provide an efficient uptake and processing of antigens by dendritic cells.

Deep Pharma Intelligence Sources - SilVacX

Osivax — is a clinical stage biotechnology company, which owns a novel proprietary nanoparticle technology. This technology - oligoDOM - can be applied for many types of vaccines, including cancer vaccines.

It is specifically designed to trigger superior T-cell responses, in addition to strong and sustained B-cell responses. In other words, it engages both cytotoxic and memory immune cells.

OligoDOM technology was tested with different antigens, as well as within different vaccine forms. It can be combined with recombinant proteins, or mRNA technology, leading to multiple value generation opportunities.

Currently Osivax is expanding their portfolio to include cancer targets, such as **HPV antigen**.

Single gene Protein monomer oligoDOM vaccine Full length target antigen Auto-assemble Size: ~20 nm

Recombinant protein from a single gene with three synergistic domains

A large, positively charged, highly immunogenic version of the antigen

Deep Pharma Intelligence Sources — Osivax Technology

Midatech Pharma — is a pharmaceutical company focused on drug delivery technology and its application for various diseases, including cancer.

Midatech owns three drug delivery platforms which enable comprehensive improvement of biodelivery and biodistribution of 'on-market' and pre-approval drugs.

Q-Sphera

proprietary 3D printing technology that encapsulates medicines into bioresorbable polymer microspheres with precision characteristics

- Micro-encapsulation PLGA polymer depot system
- Advanced piezo printing technology
- Several million microspheres produced per second

MidaCore

ultra-small **gold nanoparticle** (GNP) drug conjugates

The small size and multi-functional arrangement of molecules around a gold core underpin MidaCore's ability to improve biodistribution and targeted drug delivery

MidaSolve

solubilises potent molecules that have minimal solubility at biological pH extending available routes of administration

Used for direct-to-tumor delivery

Deep Pharma Intelligence Sources — <u>Midatech Pharma Technology</u>

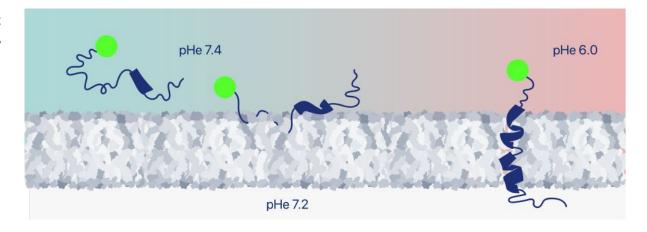
Alnylam Pharmaceuticals is a biopharmaceutical company that develops therapy with an RNA interference (RNAi) approach. The company's therapeutic focus areas are genetic medicines, cardio-metabolic diseases, infectious diseases, central nervous system (CNS) and ocular diseases. For delivery of their therapy, Alnylam utilizes two delivery platforms - **lipid nanoparticles (LPNs)** and **conjugates**.

Lipid Nanoparticles

- Alnylam has an approved iRNA therapy that utilizes LNP-based delivery - ONPATTRO® (patisiran).
- LNPs are chemically synthesized multicomponent lipid formulations (~100 nm in size) that encapsulate siRNAs and deliver the medicine to the target tissue.
- LNPs protect the drug from degradation by ubiquitous nucleases.
- LNPs in ONPATTRO have an affinity for apolipoprotein E
 which is expressed on the surface of hepatocytes, that
 allows the accurate delivery of siRNA to the liver.

Conjugates

- Conjugates are single chemical entities that have siRNA coupled to target ligands to aid them in finding their way to a particular cell or tissue in the body. The ligand attached to the siRNA has an affinity to the receptor on the target cell, which creates a "lock and key" system.
- Alnylam has developed two conjugate approaches to enable targeted delivery to the liver and the central nervous system (CNS).
- The company utilises GalNAc conjugates that bind to the asialoglycoprotein receptor for targeting the liver, which is abundantly expressed on liver cells (hepatocytes).


Deep Pharma Intelligence Sources - Alnylam Pharmaceuticals 6

pHLIP is a company that develops peptide-based targeted delivery platforms to cure cancer, inflammation and other acidic tissue diseases. Their innovative platform **pHLIP®s** (**pH-Low Insertion Peptides**) is a platform technology of **pH-sensitive peptides** that exploit pH differences between healthy and diseased cells as a biomarker for targeting and delivering therapeutic and imaging agents to cells in acidic diseased tissues.

Molecular Mechanism:

- pHLIP® peptides sense and target pH at cell surfaces, where the pH is the lowest, thus providing high sensitivity.
- pHLIP® peptides exploit folding and insertion across the cell membrane, a cooperative process that gives high specificity.
- pHLIP® peptides do not target or accumulate in cells with normal surface pH in healthy tissue.

Deep Pharma Intelligence Sources — Philip Inc.

Codiak Biosciences is a biopharmaceutical company focused on pioneering the development of exosome-based therapeutics. Codiak created the **engEx Platform**, which allows us to build and engineer exosomes with unique features, load them with a variety of therapeutic compounds, and guide their tropism to particular target cells. The platform uses exosome-associated proteins - PTGFRN and BASP1 – as scaffolds to direct proteins of interest (targeting ligands and therapeutic molecules) to the surface or the lumen of exosomes.

Exosomes have the potential to be a beneficial therapeutic method due to their capacity to selectively transport a wide range of therapeutic payloads to cells, opening the door to a wide range of possible applications in illnesses that have eluded other treatments.

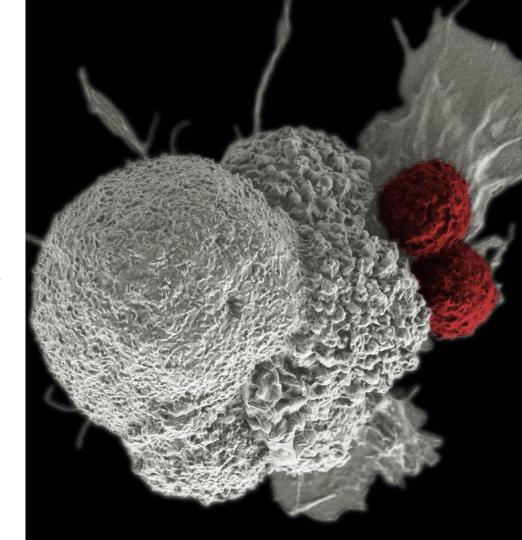
Targeted Delivery

- Exosome tropism can be designed so they reach specific cell types in the body.
- The targeted delivery enhances drug efficacy and safety.

Immune Silent

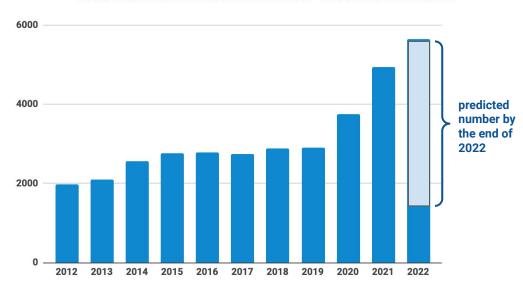
 Exosomes are composed of natural human proteins and lipids, making them inherently non-immunogenic.

Multi-Functional



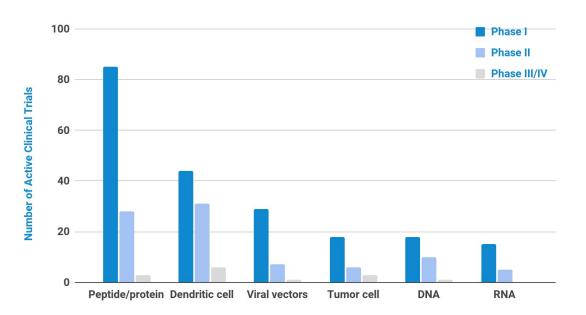
 Exosomes can be loaded with multiple different types of molecules and can influence their targets in multiple ways.

Deep Pharma Intelligence Sources —


Key Takeaways and General Conclusions

Key Takeaways

Total Scientific Interest in Cancer Vaccines Research


The graph demonstrates the growing number of publications mentioning cancer vaccines by year. Over a decade the annual publishing grew more than 2.5 fold and is expected to continue increasing.

- The interest in cancer vaccination is continually growing and is currently experiencing an outburst in 2021. This mature field of immunotherapy requires novel approaches and revitalization solutions.
- The most actively developing platform right now is neoantigens platform, which we observe from analysing the lead products of big pharmaceutical companies.
- The most prominent research vectors in the field of cancer vaccines are aimed at enhancement of immunogenicity while reducing a non-targeted damage of healthy cells, targeting multiple antigens and developing an universal vaccine for a broad spectrum of malignancies.

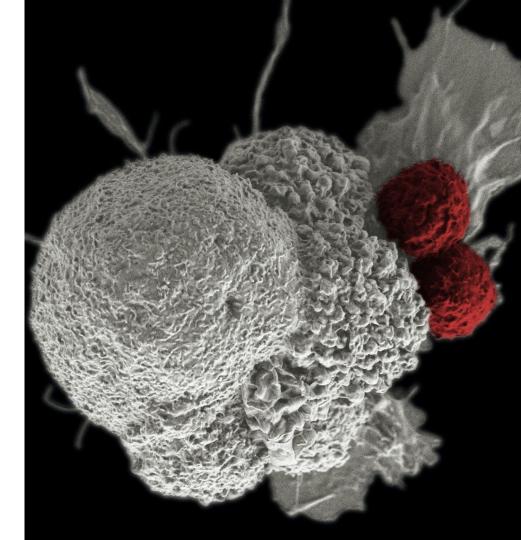
Deep Pharma Intelligence Sources — <u>PubMed Database</u>

Key Takeaways

Distribution of Clinical Trials for Cancer Vaccines According to the Vaccine Delivery Form

The information is given according to the clinicaltrials.gov investigation by Cuzzubbo et al.

- Besides the common tendency of having the highest number of product candidates on the first phases of clinical trials, there is an even distribution of numbers depending on the delivery form of cancer vaccine.
- Peptide/protein form was represented by over 115 candidates on different stages of clinical trials being the leading platform for vaccine delivery to the target cells. Dendritic cells appear to be the second leader with already approved Sipuleucel-T.
- Fewer number of cancer vaccines are delivered in the form of DNA and RNA, which can be due to higher cost of development and younger age of the platform.


General Conclusions

- We have reviewed the 5 cancer vaccine platforms which are actively developing their products to enter the market of immunotherapy. As a result we conducted assessment of more than 150 companies and R&D centers, and detailed analysis of more than 30 of them.
- Identified cancer vaccine platforms have distinguishable features and development timelines, as well as representative companies with the products pipelines. All the reviewed key player companies, in our opinion, possess strong R&D bases, have well-developed level of technology and intellectual property and large total addressable markets for their products.
- We believe that cancer vaccine development is moving into the direction of more specific tumour targeting while reducing side effects by the novel delivery methods, antigen identification applications or vaccine preparation process itself.
- will probably be pushed out with such growing cancer vaccine platform as antigenic essence, which is likely to combine a high specificity, efficiency and time- and cost-effectiveness.

Currently, the major attention is paid to neoantigen platform, but it

Appendix: List of Entities

150 Cancer Vaccine Companies

1	AdaptVac	16	Autolus	31	Cellectis
2	Aeon Therapeutics	17	AVAX Technologies	32	Celularity
3	Agenus Inc.	18	Avrobio	33	Celyad
4	AiVita Biomedical	19	Bavarian Nordic	34	Codiak Biosciences
5	Allogene Therapeutics	20	BioMedicure	35	Corixa Corporation
6	Alnylam Pharmaceuticals	21	BioNTech	36	CureVac
7	Amal Therapeutics	22	BioVaxys	37	Defence Therapeutics
8	Amgen	23	Boehringer Ingelheim	38	Dendreon
9	Anixa Biosciences	24	BriaCell Therapeutics	39	Dynavax Technologies Corporation
10	Antigen Express	25	BrightPath Biotherapeutics	40	Editas Medicine
11	Antion Biosciences	26	Calviri	41	Elicio Therapeutics
12	Apeiron Biologics	27	CaroGen	42	Elios Therapeutics
13	Arcellx	28	CARsgen Therapeutics	43	Enara Bio
14	Arrowhead Pharmaceuticals	29	Celdara Medical	44	Enochian Biosciences
15	AstraZeneca	30	Celgene	45	EpiThany

150 Cancer Vaccine Companies

46	Epitopoietic Research Corporation	61	Gracell Biotechnologies	76	ISA Pharmaceuticals
47	EpiVax Oncology	62	Gradalis	77	Janssen Pharmaceuticals
48	eTheRNA	63	Gritstone Oncology	78	Juno Therapeutics
49	Evaxion Biotech	64	Heat Biologics	79	Khloris Biosciences
50	ExploRNA Therapeutics	65	Hookipa Pharma	80	Kite Pharma
51	EXUMA Biotech	66	Hubro Therapeutics	81	Lava Therapeutics
52	Flow Pharma	67	Immunetune	82	Legend Biotech
53	Frame Therapeutics	68	Immunicum	83	Lytix Biopharma
54	Galena Biopharma	69	Immunomic Therapeutics	84	Magenta
55	GemVax & Kael	70	ImmunoRestoration	85	MaxiVAX
56	Geneos Therapeutics	71	Imvax	86	Medigene
57	Generex Biotechnology	72	Inovio Pharmaceuticals	87	Midatech Pharma
58	Genocea Biosciences	73	InProTher ApS	88	Moderna Therapeutics
59	Geovax	74	IO Biotech	89	Mustang Bio
60	GlaxoSmithKline	75	Ionis Pharmaceuticals	90	Neuvogen

150 Cancer Vaccine Companies

91	NewLink Genetics Corporation	106	Pepscan
92	NexImmune	107	Personalis
93	Noile-Immune Biotech	108	pHLIP
94	Northwest Biotherapeutics	109	Phoreus Biotech
95	Nouscom	110	Polynoma
96	NovaRx	111	Precision BioSciences
97	Nykode Therapeutics	112	ProMab Biotechnologies
98	Onco Therapy Science	113	Providence Therapeutics
99	OncoPep	114	PsiOxus Therapeutics
100	ONYvax	115	Regen BioPharma
101	Oryx Translational Medicine	116	Rhovac ApS
102	Osivax	117	RNAimmune
103	Oxford Vacmedix	118	Roche
104	OxVax	119	Rubius Therapeutics
105	PDC*line Pharma	120	SapVax

150 Cancer Vaccine Companies

121	Scancell Holdings	136	NewLink Genetics Corporation
122	SELLAS Life Sciences	137	NexImmune
123	Sensei Biotherapeutics	138	Noile-Immune Biotech
124	Silvacx	139	Northwest Biotherapeutics
125	Socium Therapeutics	140	Nouscom
126	Sonoma	141	NovaRx
127	Sorrento Therapeutics	142	Nykode Therapeutics
128	Southwest Oncology Group	143	Onco Therapy Science
129	SpyBiotech	144	OncoPep
130	Strike Pharma	145	ONYvax
131	Sumitomo Pharma Oncology	146	Oryx Translational Medicine
132	Takeda Pharmaceuticals	147	Osivax
133	Takis Biotech	148	Oxford Vacmedix
134	Targovax	149	OxVax
135	Tmunity Therapeutics	150	PDC*line Pharma

S
nerapies
Foundation
ences
e Equity
r

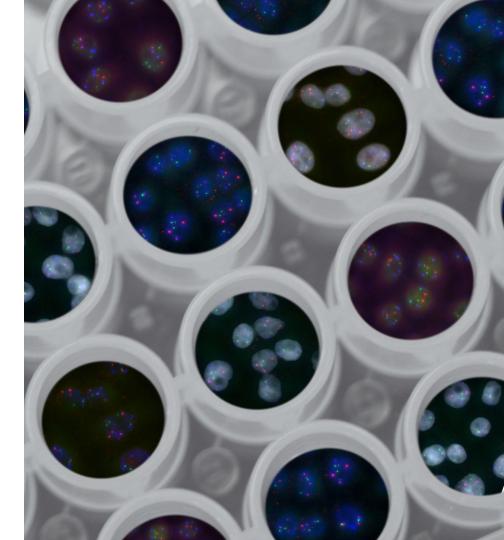
46	BIVF	61	CAM Capital	76	Connecticut Innovations
47	Boxer Capital	62	Cambrian Biopharma	77	Cormorant Asset Management
48	Bpifrance	63	Cancer Rop	78	Crimson Peak
49	Braavos Investment Advisers	64	CARB-X	79	Crystal Bioscience
50	Brace Pharma	65	Care Capital	80	Dai-ichi Life
51	Brain Asset Management	66	Casdin Capital	81	DARPA
52	Brainchild Holdings	67	Catalio Capital Management	82	DBJ Capital
53	BrightEdge Fund	68	Celgene	83	Deep Track Capital
54	Bristol Myers Squibb	69	Chartwave	84	Deerfield Capital Management
55	Business Finland	70	CMMT	85	DTRA
56	BXR Partners LLP	71	Cherwell Capital	86	DPCM LP
57	CaaS Capital Management	72	CGPHH	87	Dragasac Limited
58	Calculus Capital	73	Clal Biotechnology Industries	88	EcoR1 Capital
59	CIRM	74	Clarus Ventures	89	EDBI
60	California Technology Ventures	75	CEPI	90	EFung Capital

91	EIR Ventures	106	Future Planet Capital	121	High-Tech Grunderfonds
92	European Commission	107	Future Ventures	122	Hillhouse Capital Group
93	European Innovation Council	108	GeneMatrix	123	Horatio Ventures NYC
94	European Investment Bank	109	Genzyme	124	Horizon 2020
95	Eventide	110	German Federal Ministry of ER	125	Horizon Technology Finance
96	Evotec	111	Gilde Healthcare	126	Hudson Bay Capital Management
97	F-Prime Capital	112	Gilead Sciences	127	Human Longevity
98	F1 BioVentures	113	GlaxoSmithKline	128	Hunza Ventures
99	FMRC	114	Global Bio Fund	129	Hygea VCT
100	Flagship Pioneering	115	Great Point Partners	130	Idinvest Partners
101	Flerie Invest	116	Grifols	131	Imperial Innovations
102	Fortress Investment Group	117	GV	132	infinitas capital group
103	Franklin Templeton Investments	118	Hambro Perks Ltd.	133	Innovation Engine
104	Frazier Healthcare Partners	119	Hansongneotech	134	Innovation Fund Denmark
105	Fund+	120	HBM Healthcare Investments AG	135	Innovation Norway
		_			

136	Inovio Pharmaceuticals	151	Keiretsu Forum Northwest	166	Lead Compass Investment
137	Invesco	152	KfW	167	Leerink Partners
138	Invus	153	Khosla Ventures	168	Leukemia & Lymphoma Society
139	Ippon Capital	154	King Star Capital	169	Life Science Angels
140	Irving Investors	155	Kinled Holding	170	Life Sciences Pennsylvania
141	Janus Henderson Investors	156	Kleiner Perkins	171	Life Sciences Partners
142	Jebsen Capital	157	Korea Investment Partners	172	Life Sciences Research Partners.
143	Jennison Associates	158	Korify Capital AG	173	Lifeforce Capital
144	JIC	159	Kreftforeningen	174	Lightspeed Venture Partners
145	JM Family Enterprises	160	KSP	175	Lilly Asia Ventures
146	Johnson & Johnson Innovation	161	KTB Ventures	176	Livzon Pharmaceutical Group
147	Jolly Innovation Ventures	162	Kukje Pharma	177	Loyal Valley Capital
148	Kaitai Capital	163	Kurma Partners	178	LSP
149	Keiretsu Capital	164	Landeskreditbank BW	179	LSP BioVentures
150	Keiretsu Forum	165	LBBW Asset Management	180	Luminous Ventures

181	Lundbeckfonden Emerge	196	Moore Strategic Ventures	211	Novartis
182	Lundbeckfonden Ventures	197	Morningside Venture Partners	212	Novo Ventures
183	Lupus Ventures	198	MRL Ventures Fund	213	ODYSSEE VENTURE
184	M&G Investments	199	MSD Partners	214	Omega Funds
185	MBLVC	200	National Cancer Institute	215	OrbiMed
186	Mercia Asset Management PLC	201	National Institutes of Health	216	Osage University Partners
187	Merck	202	New Enterprise Associates	217	Outsized Ventures
188	Meusinvest (Noshaq)	203	Nextech Invest	218	Oxford Capital Partners
189	Mid Atlantic Bio Angels	204	NextWaveBio	219	Oxford Investment Consultants
190	Minority Angel Investor Network	205	Nippon Venture Capital	220	Oxford Sciences Innovation
191	Mirae Asset Global Investments	206	Norinnova Forvaltning	221	Oxford University Innovation
192	MiraeAsset Financial Group	207	Norinnova Invest	222	Penn Medicine Co-Investment
193	MKB & Technofonds Flevoland	208	Northleaf Capital Partners	223	Perceptive Advisors
194	Mohr Davidow Ventures	209	Norwegian Research Council	224	Pfizer Venture Investments
195	MCRF	210	Novalis LifeSciences	225	PFM Health Sciences

226	Photon Fund	241	Radium Hospital Research Foundation	256	Sansei Capital Investment
227	Picasso Kapital	242	Redmile Group	257	Sante Ventures
228	Pictet Private Equity Investors .	243	Regeneron	258	Schroder Adveq
229	Piedmont Capital Partners	244	Ridgeback Capital	259	Section 32
230	Piper Sandler	245	Riverbank Capital Securities	260	Sequoia Capital
231	Platinum Asset Management	2 46	Robin Hood Ventures	261	Serrado Capital
232	PMV	247	Rotating Boulder Fund	262	SFPI-FPIM
233	Point72	248	Runway Growth Capital	263	SSSB
234	Pontifax AgTech	249	S.R.I.W.	264	Shibuya Kogyo
235	PPM Oost NV	250	SAIKYO	265	Shinhan-Cognitive Start-up Fund
236	Presight Capital	251	Såkorn Invest Nord	266	Shiyu Capital
237	Pura Vida Investments	252	Sambrinvest	267	Silence Therapeutics
238	Pureos Bioventures	253	Samsara BioCapital	268	Sinobioway Group
239	Qatar Investment Authority	254	Sand Hill Angels	269	Sirnaomics
240	RA Capital Management	255	Sanofi Ventures	270	Sirona Capital


271	Sixty Degree Capital	286	Syncona Partners LLP	301	Trend Investment Group
272	Smooth River	287	T. Rowe Price	302	Trygve Schiorbeck
273	Sofinnova Partners	288	Takeda	303	Two River
274	SoftBank	289	Takeda Ventures	304	U.S. Department of Defense
275	Sorrento Therapeutics	290	TCG Crossover	305	UCLB
276	Sosei CVC	291	Technofund Flevoland	306	United Therapeutics
277	South China Venture Capital	292	Temasek Holdings	307	University of Pennsylvania
278	Sparebanken Nord-Norge	293	Tencent	308	UTC Investment Co.
279	SR One	294	Tera Science	309	venBio Select Advisor
280	Stanford University	295	Teralys Capital	310	Venrock
281	Summer Capital	296	The Future Fund	311	Versant Ventures
282	Sunstone Life Science Ventures	297	The Longevity Fund	312	Vienna Insurance Group
283	SunTerra Capital	298	The Watermill Group	313	Viking Global Investors
284	Surveyor Capital	299	Third Rock Ventures	314	Vivo Capital
285	SV Health Investors	300	TPG	315	Wageningen Business Generator

316	Wellington Management	331	Bill Maris	346	Mason Ng
317	Westlake Village BioPartners	332	Blackstone Credit	347	Matthew Katz
318	Woodford Investment	333	Boris Nikolic	348	Mitzi Krockover
319	Xfund	334	Cardinal Partners	349	Novo Holdings
320	YTLO	335	Cédric Delorme	350	Oxford Technology Management
321	Yijing Capital	336	Citadel	351	Oystein Rekdal
322	York Capital Management	337	David Castle	352	Polaris Partners
323	Ysios Capital	338	DCI Partners	353	Quantum Technology Partners
324	Yukon Partners	339	Duke Management Company	354	SCALE AI
325	4PPF Group	340	Healthcare Innovation	355	SFC Co
326	Alexandria Venture	341	Heritage Group	356	Starr Insurance Companies
327	Alpha Holdings	342	HLB Co	357	Thynk Capital, LLC.
328	Alta Partners	343	Ibis Capital Partners	358	Tony Robbins
329	Arie Belldegrun	344	Jacque J. Sokolov	359	VI Partners
330	BiGEN	345	John Sigurd Svendsen	360	Alice Ventures

361	Alta Berkeley Venture Partners	376	Iowa Capital Management
362	Ames Seed Capital	377	Magnetar Capital
363	Avidity Partners	378	Midwest Oilseeds
364	Bay City Capital	379	National Institute of Allergy and Infectious Diseases
365	Biotechnology Value Fund	380	NLG Advisors
366	Chicagoland Investors	381	OVP Venture Partners
367	CRG	382	Quark Venture
368	Droia Ventures	383	Square 1 Bank
369	Excalibur Fund Managers	384	Terra Magnum Capital Partners
370	Forward Ventures	385	TLP Investment Partners
371	GF Securities	386	Vida Ventures
372	Global health sciences venture fund	387	Ziff Capital Partners
373	Hercules Capital	388	3i Group
374	HP WILD HOLDING AG	389	Enterprise Partners
375	InterWest Partners	390	WILD Group Management

Overview of Proprietary Analytics by Deep Pharma Intelligence

About Deep Pharma Intelligence

Deep Pharma Intelligence is producing regular analytical reports on major areas of high-potential in the pharmaceutical and healthcare industries, maintaining ratings of companies and governments based on their innovation potential and business activity in the BioTech space, and providing strategic consulting and investment intelligence services to top-tier clients, including major investment funds and banks, family offices, insurance companies, government organizations, and big pharma companies among others. The company is a joint venture between the two highly specialized UK-based market intelligence hubs in Pharma / BioTech space:

Bio Pharma Trend

Pharma Division of Deep Knowledge Analytics (PD-DKA), a specialized subsidiary of Deep Knowledge Analytics (DKA), the leading analytical entity specifically focused on deep intelligence of the high-potential areas in the pharma industry, including artificial intelligence (AI) for drug discovery sector.

Deep Knowledge Analytics Pharma Division serves as the main source of investment intelligence and analytics for Al-Pharma, a specialized index hedge fund for the Al in the drug discovery sector. PD-DKA's insights are frequently covered by top media such as Forbes and the Financial Times, and are acknowledged by top pharma executives.

Recently, MIT named this division a top technology think-tank, acknowledging the AI ranking framework it developed.

BPT Analytics (BiopharmaTrend) - a rapidly growing analytical portal and media resource, dedicated to tracking emerging companies (startups/scaleups), innovations, investments, and trends in the pharma and biotech space.

BiopharmaTrend's reports and articles were referenced by Deloitte, Forbes, and other high profile media and consulting companies.

BiopharmaTrend is a media partner to a number of top-tier conferences and symposia in preclinical and clinical research, and healthcare research.

Overview of Proprietary Analytics by Deep Pharma Intelligence

Deep Pharma Intelligence (DPI) is a strategic partner to the leading Life Science organizations, investment institutions (VC funds, investment banks), and governments across the globe — in matters related to investments, strategic positioning, and policy development in the areas of pharmaceutical and biotech research, and healthcare tech.

While Deep Pharma Intelligence is regularly producing open industry reports covering high-growth sectors in the Life Sciences, including artificial intelligence (AI), digital health, and new therapies, some of the more in-depth research is only available to our clients and strategic partners under the "Proprietary Analytics" category.

Our range of proprietary services includes custom consulting projects, based on the specific customer needs, as well as a collection of pre-produced "ready-to-use" proprietary reports, produced by our research team, covering general trends and specific action ideas and strategy insights related to the most promising investment prospects (e.g. new technologies, biotech startups), M&A prospects (e.g. pipeline development targets), and strategic growth ideas (trends profiling, industry overviews etc).

Services:

- Investment landscape profiling, identifying investment ideas in the biotech/healthcare tech space
- Preliminary due-diligence (business, science and technology, intellectual property (IP) profiling, freedom of operation assessment, legal assessment etc)
- Comprehensive due-diligence (deep business, science and technology assessment, IP and legal assessment, growth potential assessment etc)
- Infringement analysis of technology (i.g. If you plan to partner or invest in a data-analytics biotechs, or Al-development vendors, it is essential to understand their technological assets, both in terms of innovation potential and in terms of legal protection and non-infringement risk management)
- SWOT analysis of companies and technological sectors, competitive profiling
- Industry profiling and growth strategy development for top-tier companies and governments.

Overview of Proprietary Analytics by Deep Pharma Intelligence

Proprietary Reports

There are a few 40+ page reports delivering practical answers to these specific questions in order to optimize the short and long-term strategies of biopharma corporations and other institutions related to the industry, with a newly updated edition being released each quarter, incrementally increasing the precision, practicality and actionability of its technological and financial analysis.

Our reports are supported by our rapidly developing data mining engine, data visualization platform and analytics dashboards.

The value our reports can deliver:

- Deep analysis of the deal-making prospects in the biotech and healthcare tech space, identification of top mini-trends and larger tendencies in innovations and technology adoption (e.g. Al, blockchain, eHealth tech, longevity biomarkers, new therapeutics and therapies etc.)
- Tangible forecasts on the 3-5 years horizon, providing an overview of future scenarios of the development of various technologies in the pharma industry
- Practical guides for adopting various technological solutions and best practises, vendor profiling and contract research strategy building
- Analysis of key market players in the emerging and high-growth areas of the pharmaceutical and biotech industries.

The parties who gain early access to these reports will have deep expertise on how their strategic agendas can be optimized in order to leverage novel research, new technologies, and emerging market opportunities, and stay competitive in a rapidly-changing technological environment, and taking into account shifting global priorities and trends.

Deep Pharma Intelligence: Analytical Dashboard

Our company is building a sophisticated cloud-based engine for advanced market and business intelligence in the pharmaceutical and healthcare industries. It includes data mining engine, infrastructure for expert data curation, and advanced visualization dashboards, including mindmaps, knowledge graphs, and 3-dimensional visualizations.

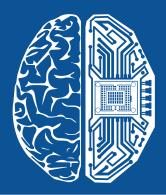
Visit our dashboard to learn more: www.platform.dkv.global/dashboards/ai-for-drug-discovery

Deep Pharma Intelligence: Analytical Reports

Artificial Intelligence for Drug Discovery Landscape Overview, Q1 2022 is an analytical report created by Deep Pharma Intelligence company that aims to provide a comprehensive overview of the industry landscape in what pertains adoption of AI in drug discovery, clinical research and other aspects of pharmaceutical R&D.

Learn more:

www.deep-pharma.tech/ai-in-drug-discovery-2022-q1



Landscape of Advanced Technology Companies in Pharmaceutical Industry Q4 2021 is an analytical report that provides insights about the expansion of technology developers and vendors into the pharmaceutical space, and their increasing role and influence on the overall success of drug discovery and pharmaceutical business.

Learn more:

www.deep-pharma.tech/technology-report-q4-2021

Link to the Report: www.deep-pharma.tech/landscape-of-cancer-vaccines

E-mail: info@deep-pharma.tech

Website: www.deep-pharma.tech

Deep Pharma Intelligence (DPI) Disclaimer.

The information and opinions in this report were prepared by Deep Pharma Intelligence. The information herein is believed by DPI to be reliable but DPI makes no representation as to the accuracy or completeness of such information. There is no guarantee that the views and opinions expressed in this communication will come to pass. DPI may provide, may have provided or may seek to provide advisory services to one or more companies mentioned herein. In addition, employees of DPI may have purchased or may purchase securities in one or more companies mentioned in this report. Opinions, estimates and analyses in this report constitute the current judgment of the author as of the date of this report. They do not necessarily reflect the opinions of DPI and are subject to change without notice. DPI has no obligation to update, modify or amend this report or to otherwise notify a reader thereof in the event that any matter stated herein, or any opinion, estimate, forecast or analysis set forth herein, changes or subsequently becomes inaccurate. This report is provided for informational purposes only. It is not to be construed as an offer to buy or sell or a solicitation of an offer to buy or sell any financial instruments or to participate in any particular trading strategy in any jurisdiction.